Environmental Permit No. EP-356/2009

Air Quality Baseline Monitoring Report

22 April 2010

Chung Shun Boring Eng. Co., Ltd.

Contract No. HK/2009/04
Wan Chai Development Phase II and
Central – Wan Chai Bypass –
Baseline Sampling, Field Measurement and
Testing Works

Baseline Air Quality Monitoring Report (for EP-356/2009)

	Name	Signature
Prepared by:	Chung Shun Boring Eng. Co.	-
Certified by:	Environmental Team Leader – Mr. Andy W L Chung	James p.p.

22 April 2010

CONTENTS

Exe	ecutiv	ve Summary1
1	Intr	roduction2
	1.1	Background2
	1.2	Purpose of Baseline Air Quality Monitoring Report2
2	Air	Quality Monitoring3
	2.1	Monitoring Requirements
	2.2	Monitoring Equipment
	2.3	Monitoring Locations
	2.4	Monitoring Parameters, Frequency and Duration
	2.5	Monitoring Methodology $\overline{4}$
	2.6	Results and Observations
	2.7	Event and Action Levels
	2.8	
3	Со	nslusions and Recommendations9

LIST OF TABLES

Table 2.1	Air Quality Monitoring Equipment
Table 2.2	Baseline Air Quality Monitoring Stations
Table 2.3	Air Quality Monitoring Parameters, Frequency and Duration
Table 2.4	Summary of 1-hour TSP Baseline Monitoring Results
Table 2.5	Summary of 24-hour TSP Baseline Monitoring Results
Table 2.6	Derivation of Action and Limit Levels for Air Quality
Table 2.7	Derived Action and Limit Levels for Air Quality
Table 2.8	Event / Action Plan for Construction Air Quality

LIST OF FIGURES

Figure 2.1 Locations of Air Quality Monitoring Stations

LIST OF APPENDICES

Appendix A	Calibration Certificates of Monitoring Equipment
Appendix B	Baseline Air Quality Monitoring Data
Appendix C	Response to Comments

EXECUTIVE SUMMARY

The baseline air quality monitoring was carried out between 4 December 2009 and 17 December 2009 for all designated air quality monitoring locations described in the updated EM&A Manual. Air quality was recorded in terms of 1-hour Total Suspended Particulates (TSP) and 24-hour TSP.

The monitoring results were presented in this report and no major pollution source and extreme weather, which might affect the results, were observed during the baseline monitoring period.

The averaged 1-hour TSP levels and 24-hour TSP levels at 6 monitoring locations are summarized as follows:

Air Quality Monitoring location	CMA1a	CMA2a	CMA3	CMA4a	CMA5	CMA6
Averaged 1-hr TSP (µg/m³)	107.8	112.9	94.3	96.2	126.1	77.1
Averaged 24-hr TSP (µg/m³)	71.9	60.7	63.1	63.4	78.5	88.2

The Action and Limit Levels for air quality impact monitoring were derived based on the criteria adopted from the updated EM&A Manual.

1 INTRODUCTION

1.1 Background

- 1.1.1 The Project is located mainly in Wan Chai North, Causeway Bay and North Point, and is demarcated by Gloucester Road and Victoria Park Road to the south, Fenwick Pier Street to the west and Tong Shui Road Interchange to the east.
- 1.1.2 The project area encompasses existing developments along the Wan Chai, Causeway Bay and North Point shorelines. Major land uses include the Hong Kong Convention & Exhibition Centre (HKCEC) Extension, the Wan Chai Ferry Pier, the ex-Wan Chai Public Cargo Working Area (ex-PCWA), the Royal Hong Kong Yacht Club (RHKYC), the Police Officers' Club, the Causeway Bay Typhoon Shelter (CBTS) and commercial and residential developments.
- 1.1.3 The scope of the Project comprises:
 - (i) Land formation for key transport infrastructure and facilities, including the Trunk Road (i.e. CWB) and the associated slip roads for connection to the Trunk Road and for through traffic from Central to Wan Chai and Causeway Bay. The land formed for the above transport infrastructure will provide opportunities for the development of an attractive waterfront promenade for the enjoyment of the public.
 - (ii) Reprovisioning / protection of the existing facilities and structures affected by the land formation works mentioned above.
 - (iii) Extension, modification, reprovisioning or protection of existing storm water drainage outfalls, sewerage outfalls and watermains affected by the revised land use and land formation works mentioned above.
 - (iv) Upgrading of hinterland storm water drainage system and sewerage system, which would be rendered insufficient by the land formation works mentioned above.
 - (v) Provision of the ground level roads, flyovers, footbridges, necessary transport facilities and the associated utility services.
 - (vi) Construction of the new waterfront promenade, landscape works and the associated utility services.
 - (vii) The Trunk Road (i.e. CWB) within the project area and the associated slip roads for connection to the Trunk Road.
- 1.1.4 The proposed Project is an engineering feasibility study of an urban development project with a project area covering more than 20 ha. Under the EIAO, this Project is classified as a Schedule 3 Designated Project (DP) under item 1 of the Schedule 3 "Major Designated Projects Requiring Environmental Impact Assessment Reports". The Project also contains various Schedule 2 DPs that, under the EIAO, require Environmental Permits (EPs) to be granted by the DEP before they may be either constructed or operated.

1.2 Purpose of Baseline Air Quality Monitoring Report

- 1.2.1 The purpose of this report is to review the baseline conditions of air quality at the Project site, and to establish baseline levels for air quality in accordance with the updated EM&A Manual. These levels would be used as the basis for assessing environmental impact and compliance during construction of the Project.
- 1.2.2 This baseline monitoring report presents the baseline monitoring requirements, methodologies and monitoring results of air quality at 6 air quality monitoring locations described in the updated EM&A Manual.
- 1.2.3 The baseline monitoring results for noise, water quality and coral survey will be presented in their individual baseline monitoring reports.

2 AIR QUALITY MONITORING

2.1 Monitoring Requirements

2.1.1 In accordance with the updated EM&A Manual, baseline 1-hour and 24-hour TSP levels at 6 air quality monitoring stations should be established by conducting baseline 1-hour and 24-hour TSP monitoring for at least 14 days.

2.2 Monitoring Equipment

2.2.1 The 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the updated EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in **Table 2.1**.

Table 2.1 Air Quality Monitoring Equipment

Equipment	Brand and Model
Portable direct reading dust meter (1-hour TSP)	Sibata Digital Dust Monitor (Model No. LD-3)
High Volume Sampler (24-hour TSP)	Tisch Total Suspended Particulate Mass Flow Controlled High Volume Air Sampler (Model No. TE-5170)

2.3 Monitoring Locations

2.3.1 In accordance with the updated EM&A Manual, the air quality monitoring stations for baseline air quality monitoring is presented in **Table 2.2** and shown in **Figure 2.1**.

Table 2.2 Baseline Air Quality Monitoring Stations

Monitoring Location	Description	Level (in terms of no. of floor)
CMA1a	North Point – PLK Yu Lee Mo Fan Memorial School	4 (roof-top)
CMA2a	Causeway Bay - Causeway Bay Community Centre	4
CMA3	Causeway Bay – Royal Hong Kong Yacht Club	3 (roof-top)
CMA4a	Wanchai – Society for the Prevention of Cruelty to Animals (SPCA)	6 (roof-top)
CMA5	Wanchai – Pedestrian Plaza	0
CMA6	Wanchai – Servicemen's Guides Association)	3 (roof-top)

2.4 Monitoring Parameters, Frequency and Duration

2.4.1 The monitoring parameters, frequency and duration of air quality monitoring are summarized in **Table 2.3**.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

Parameter	Frequency and Duration
1-hour TSP	3 times (at three consecutive hours) per day while the highest dust impact was expected, for 14 days
24-hour TSP	Daily, for 14 days

2.5 Monitoring Methodology

2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
 - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
 - (ii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
 - (iii) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
 - (iv) No furnace or incinerator flues nearby.
 - (v) Airflow around the sampler was unrestricted.
 - (vi) Permission was obtained to set up the samplers and access to the monitoring stations
 - (vii) A secured supply of electricity was obtained to operate the samplers.
 - (viii) The sampler was located more than 20 meters from any dripline.
 - (ix) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
 - (x) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

(b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- (iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd. and has comprehensive quality assurance and quality control programmes.

(c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.

- (ix) On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to laboratory for analysis.

(d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) HVSs were calibrated at 2-month intervals using TE-5025A Calibration Kit prior to the commencement of baseline monitoring.
- (iii) Calibration certificate of the HVSs are provided in **Appendix A**.

2.5.2 1-hour TSP Monitoring

(a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG]
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

(b) Maintenance and Calibration

(i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in **Appendix A**.

2.6 Results and Observations

- 2.6.1 The baseline 1-hour and 24-hour monitoring was carried out from 4 December 2009 to 17 December 2009 for consecutive 14 days and the weather were mostly sunny. Major dust sources were from nearby traffic emissions.
- 2.6.2 The baseline monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 2.4** and **Table 2.5** respectively. Detailed air quality monitoring results are presented in **Appendix B**.

Table 2.4 Summary of 1-hour TSP Baseline Monitoring Results

Parameter	Monitoring Location	Average (μg/m³)	Range (µg/m³)
	CMA1a	107.8	53.8 – 173.0
	CMA2a	112.9	69.6 – 181.4
1-hour TSP	CMA3	94.3	53.5 – 142.0
Level in µg/m ³	CMA4a	96.2	64.7 – 140.8
	CMA5	126.1	72.4 – 185.1
	CMA6	77.1	50.5 – 124.6

Table 2.5 Summary of 24-hour TSP Baseline Monitoring Results

Parameter	Monitoring Location	Average (µg/m³)	Range (µg/m³)
	CMA1a	71.9	26.0 – 142.0
	CMA2a	60.7	18.0 – 124.0
24-hour TSP	CMA3	63.1	27.0 – 123.0
Level in μg/m³	CMA4a	63.4	9.0 – 119.0
	CMA5	78.5	37.0 – 132.0
	CMA6	88.2	37.0 – 163.0

2.7 Event and Action Levels

- 2.7.1 The air quality monitoring results, in terms of 1-hour TSP and 24-hour TSP, were below the Limit Level set out in the Air Quality Objective (AQO) at both monitoring locations.
- 2.7.2 The Action and Limit Levels for air quality impact monitoring were based on the criteria adopted from the updated EM&A Manual as presented in **Table 2.6**.

Table 2.6 Derivation of Action and Limit Levels for Air Quality

Parameters	Action	Limit
24-hour TSP Level in μg/m ³	For baseline level \leq 200 µg/m ³ , Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 200 µg/m ³ Action level = Limit level	260 μg/m³
1-hour TSP Level in µg/m³	For baseline level \leq 384 μ g/m³, Action level = (baseline level * 1.3 + Limit level)/2; For baseline level > 384 μ g/m³, Action level = Limit level	500 μg/m³

2.7.3 The derived Action and Limit levels are presented in **Table 2.7**.

Table 2.7 Derived Action and Limit Levels for Air Quality

Parameter	Monitoring Location	Action Level (μg/m³)	Limit Level (µg/m³)
	CMA1a	320.1	500
	CMA2a	323.4	500
1-hour TSP	CMA3	311.3	500
Level in µg/m³	CMA4a	312.5	500
	CMA5	332.0	500
	CMA6	300.1	500
24-hour TSP Level in μg/m³	CMA1a	176.7	260
	CMA2a	169.5	260
	CMA3	171.0	260
	CMA4a	171.2	260
	CMA5	181.0	260
	CMA6	187.3	260

2.8 Event and Action Plan

2.8.1 Should non-compliance of the air quality criteria occur, actions in accordance with the Action Plan in **Table 2.8** shall be carried out.

Table 2.8 Event / Action Plan for Construction Air Quality

EVENT		ACTION		
EVENI	ET	IEC	ER	CONTRACTOR
ACTION LEVEL				
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and ER; Repeat measurement to confirm finding; Increase monitoring frequency to daily. (The above actions should be taken within 2 working days after the exceedance is identified)	Check monitoring data submitted by ET; Check Contractor's working method. (The above actions should be taken within 2 working days after the exceedance is identified)	Notify Contractor. (The above actions should be taken within 2 working days after the exceedance is identified)	Rectify any unacceptable practice; Amend working methods if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
Exceedance for two or more consecutive samples	1. Identify source; 2. Inform IEC and ER; 3. Advise the ER on the effectiveness of the proposed remedial measures; 4. Repeat measurements to confirm findings; 5. Increase monitoring frequency to daily; 6. Discuss with IEC and Contractor on remedial actions required; 7. If exceedance continues, arrange meeting with IEC and ER; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Check monitoring data submitted by ET; 2. Check Contractor's working method; 3. Discuss with ET and Contractor on possible remedial measures; 4. Advise the ET on the effectiveness of the proposed remedial measures; 5. Supervise Implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	1. Submit proposals for remedial to ER within 3 working days of notification; 2. Implement the agreed proposals; 3. Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
LIMIT LEVEL		I .		
Exceedance for one sample	Identify source, investigate the causes of exceedance and propose remedial measures; Inform ER, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results. (The above actions should be taken within 2 working days after the exceedance is identified)	Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ER on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. (The above actions should be taken within 2 working days after the exceedance is identified)	Confirm receipt of notification of failure in writing; Notify Contractor; Ensure remedial measures properly implemented. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. (The above actions should be taken within 2 working days after the exceedance is identified)
Exceedance for two or more consecutive samples	1. Notify IEC, ER, Contractor and EPD; 2. Identify source; 3. Repeat measurement to confirm findings; 4. Increase monitoring frequency to daily; 5. Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; 6. Arrange meeting with IEC and ER to discuss the remedial actions to be taken; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and ER informed of the results; 8. If exceedance stops, cease additional monitoring. (The above actions should be taken within 2 working days after the exceedance is identified)	Discuss amongst ER, ET, and Contractor on the potential remedial actions; Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the ER accordingly; Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consolidation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)	Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the ER until the exceedance is abated. (The above actions should be taken within 2 working days after the exceedance is identified)

3 CONSLUSIONS AND RECOMMENDATIONS

3.1.1 Baseline air quality monitoring was carried out from 4 December 2009 to 17 December 2009 at 6 monitoring locations. Action Levels for air quality at each location were derived from the baseline monitoring results. No recommendation was provided in this baseline air quality monitoring report.

Figure

Appendix A

Calibration Certificates of Monitoring Equipment

Station	Yu Lee Mo Fan	Memorial School	- CMA1a	Next Due Date:	11-F	eb-10	
Cal. Date:	11-Nov-09			Serial No.	14	113	
Equipment No.:	A-001-56T			•			
			Ambient	Condition			
Temperatu	ıre, Ta (K)	299.2	Pressure, I	Pa (mmHg)		759.7	
			Orifice Transfer S	1			
Seria		1559	Slope, mc	1.97702		ept, bc	-0.0007
Last Calibra		18-May-09			= [DH x (Pa/760) x		
Next Calibr	ation Date:	18-May-10		Qstd = {[DH x (Pa/760) x (298/Ta)]	1/2 -bc} / mc	
	I			f TSP Sampler		0.51 D	
Resistance		(Orfice		HV	S Flow Recorder	
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	60) x (298/Ta)] ^{1/2}	Ostd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFN	
18	9.6		3.09	1.56	54.0	53.88	
13	7.6		2.75	1.39	48.0	47.89	
10	6.0		2.44	1.24	44.0	43.90	
7	7 3.9 1.97				36.0	35.92	
5	2.4		1.55	0.78	28.0	27.94	
Py Linear Dogra	ession of Y on X						
Slope , mw =	32.7046			Intercept, bw =	2.8	471	
Correlation Coe		<u> </u>	9974	intercept, bw =	2.0	771	
	pefficient < 0.990,			_			
ii correlation ce	70111010111 \ 0.770 ₁	oncok ana recan	brute.				
			Set Point	Calculation			
From the TSP Fi	eld Calibration Cu	ırve, take Qstd =					
From the Regres	sion Equation, th	e "Y" value accor	ding to				
	•		-				
		mw	$x \cdot x \cdot Qstd + bw = IC \cdot x$	x [(Pa/760) x (298/	Ta)] ^{1/2}		
TI (0:5		0	(0.1D.) (T.)	0.11/2			
Therefore, Set P	oint; IC = (mw x)	2std + bw) x [(/	60 / Pa) x (Ta / 29	8)]'' ² =		45.46	
Remarks:							

Station	Causeway Bay (Community Centr	e - CMA2a	Next Due Date:	3-Ma	ar-10	
Cal. Date:	3-Dec-09			Serial No.	102	281	
Equipment No.:	A-001-09T			•			
			Ambient	Condition			
Temperatu	ıre, Ta (K)	292.7	Pressure, l	Pa (mmHg)		768.5	
				<mark>tandard Informatio</mark>			
Seria		0843	Slope, mc	2.00851	Interce		-0.02006
Last Calibra		6-Nov-09			= [DH x (Pa/760) x		
Next Calibra	ation Date:	6-Nov-10		Qstd = {[DH x (Pa/760) x (298/Ta)]	"2 -bc} / mc	
				of TSP Sampler			
Resistance		(Orfice		HV:	S Flow Recorder	
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFN	
18	10.7		3.32	1.66	52.0	52.76	
13	8.6		2.98	1.49	46.0	46.67	
10	6.8		2.65	1.33	40.0	40.59	
7	4.2		2.08	1.05	34.0	34.50	
5	2.5		1.60	0.81	26.0	26.38	
Du Limour Dome	oolon of V on V						
By Linear Regre Slope , mw =	29.9021			Intercept, bw =	2.2	025	
Correlation Coe		_	9918	intercept, bw =	2.2	923	
*If Correlation Co	_			_			
ii correlation co	icilicient < 0.770,	CHECK and recail	brate.				
			Set Point	Calculation			
From the TSP Fig	eld Calibration Cu	rve, take Qstd =		Calculation			
From the Regres							
			g				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}		
Therefore, Set Po	oint; IC = (mw x 0	2std + bw) x [(7	60 / Pa) x (Ta / 29	(8)] ^{1/2} =		40.57	
Remarks:							
KEIIIdIKS:							

Station	Yacht Club - CM	/IA3		Next Due Date:	11-F	eb-10	
Cal. Date:	11-Nov-09			Serial No.	94	69	
Equipment No.:	A-001-47T			•			
			Ambient	Condition			
Temperatu	ıre, Ta (K)	300.5	Pressure,	Pa (mmHg)		759.5	
			Orifice Transfer S	tandard Information	on		
Seria	l No:	1559	Slope, mc	1.97702		ept, bc	-0.0007
Last Calibra	ation Date:	18-May-09			= [DH x (Pa/760) x		
Next Calibr	ation Date:	18-May-10		Qstd = {[DH x (Pa/760) x (298/Ta)]	^{1/2} -bc} / mc	
			Calibration of	of TSP Sampler			
		(Orfice	_	HV	S Flow Recorder	
Resistance Plate No.	DH (orifice), in. of water	[DH x (Pa/7	760) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFM	
18	9.7		3.10	1.57	56.0	55.75	
13	7.4		2.71	1.37	50.0	49.78	
10	6.2		2.48	1.25	44.0	43.80	
7	4.0		1.99	1.01	34.0	33.85	
5	2.4		1.54	0.78	22.0	21.90	
By Linear Regre Slope , mw =	ession of Y on X 43.2566			Intercept, bw =	-10.`	7267	
Correlation Coe	fficient* =	0.	.9920	•			
*If Correlation Co	pefficient < 0.990	, check and recal	ibrate.	_			
			Set Point	Calculation			
From the TSP Fi	eld Calibration C	urve, take Qstd =					
From the Regres							
-							
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}		
Therefore Cat D	oint IC (muy	Octd · bur \ v [/ 7	140 / Do) v / To / 20	no 11 ^{1/2}		4F 71	
Therefore, Set Po	UIIII, IC = (IIIW X	∠Siu + DW) X [(/	/60 / Pa) x (Ta / 29	70 J] =		45.71	
Remarks:							

Station	SPCA - CMA4a			Next Due Date:	13-F	e b -10	
Cal. Date:	13-Nov-09			Serial No.	10:	377	
Equipment No.:	A-001-10T			•			
	1			Condition			
Temperatu	ıre, Ta (K)	295.7	Pressure,	Pa (mmHg)		763.4	
				<mark>tandard Informatio</mark>			
Seria		1559	Slope, mc	1.97702		ept, bc	-0.0007
Last Calibra		18-May-09			= [DH x (Pa/760) x		
Next Calibr	ation Date:	18-May-10		Qstd = {[DH x (Pa/760) x (298/Ta)]	"2 -bc} / mc	
			0 111 11	(
				of TSP Sampler	1117	C Flow Decorder	
Resistance			Orfice	 	HV	S Flow Recorder	
Plate No.	DH (orifice),	[DH x (Pa/7	60) x (298/Ta)] ^{1/2}	Ostd (m³/min) X -	Flow Recorder	Continuous Flow	
	in. of water	[, (/)	axis	Reading (CFM)	Reading IC (CFN	/I) Y-axis
18	10.5		3.26	1.65	56.0	56.34	
13	8.3		2.90	1.47	50.0	50.31	
10	6.4		2.55	1.29	44.0	44.27	
7	4.2		2.06	1.04	36.0	36.22	
5	2.6		1.62	0.82	28.0	28.17	
Ry Linear Regre	ession of Y on X						
Slope , mw =	33.8756			Intercept, bw =	0.5	959	
Correlation Coe			9997	intercept, bw	0.0	707	
	pefficient < 0.990,			_			
0001011011 00		and room					
			Set Point	Calculation			
From the TSP Fi	eld Calibration Cu	ırve, take Qstd =					
From the Regres	sion Equation, the	e "Y" value accor	ding to				
	·		J				
		mw	x Qstd + bw = IC	x [(Pa/760) x (298/	Га)] ^{1/2}		
				> 1/2			
Therefore, Set P	oint; IC = (mw x (Qstd + bw) x [(7	60 / Pa) x (Ta / 29	08)]'' ² =		44.36	
<u> </u>							
Remarks:							
nomans.							

Station	Pedestrian Plaza	a - CMA5		Next Due Date:	4-Ma	ar-10	
Cal. Date:	4-Dec-09			Serial No.	12	93	
Equipment No.:	A-001-26T			•			
			Ambient	Condition			
Temperatu	ıre, Ta (K)	293.1	Pressure,	Pa (mmHg)		767.4	
				<mark>tandard Informatio</mark>			
Seria		0843	Slope, mc	2.00851	Interce	•	-0.02006
Last Calibra		6-Nov-09			= [DH x (Pa/760) x		
Next Calibra	ation Date:	6-Nov-10		Qstd = {[DH x (Pa/760) x (298/Ta)]	1/2 -bc} / mc	
			Calibration	A TCD Complete			
			Calibration of Orfice	o <mark>f TSP Sampler</mark>	LIVIO	S Flow Recorder	
Resistance		1	JIIICE				_
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	760) x (298/Ta)] ^{1/2}	Ostd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFM)	
18	10.5		3.28	1.64	54.0	54.71	
13	8.5		2.95	1.48	50.0	50.66	
10	6.6		2.60	1.31	44.0	44.58	
7	4.1		2.05	1.03	36.0	36.48	
5	2.5		1.60	0.81	26.0	26.34	
By Linear Regre	ssion of V on V						
Slope , mw =	33.5509			Intercept, bw =	0.4	706	
Correlation Coe			.9910	intercept, bw =	0.4	770	
*If Correlation Co	-			_			
ii correlation co	CITICICITE < 0.770,	CHCCK and recai	ibrate.				
			Set Point	Calculation			
From the TSP Fig	eld Calibration Cu	ırve, take Qstd =					
From the Regres	sion Equation, the	e "Y" value acco	rding to				
		mw	$I \times Qstd + bw = IC$	x [(Pa/760) x (298/	Га)] ^{1/2}		
Therefore ColD	-1-1 10 /	O a Lal	//	no vi1/2		40.50	
Therefore, Set Po	DINT; IC = (MW X (JSTO + DW) X [(/	760 / Pa) x (Ta / 29	/8)] =		43.52	
Remarks:							

Station	Servicemen's Gu	iides Association	ı - CMA6	Next Due Date:	11-Fe	eb-10	
Cal. Date:	11-Nov-09			Serial No.	102	281	
Equipment No.:	A-001-19T			•			
			Ambient	Condition			
Temperatu	ıre, Ta (K)	300.3	Pressure,	Pa (mmHg)		759.9	
			r e	tandard Informatio			
Seria		1559	Slope, mc	1.97702		ept, bc	-0.0007
Last Calibra		18-May-09			= [DH x (Pa/760) x		
Next Calibr	ation Date:	18-May-10		Qstd = {[DH x (Pa/760) x (298/Ta)]	"' ² -bc} / mc	
			Calibration	of TCD Complex			
			Calibration of Orfice	o <mark>f TSP Sampler</mark>	11/0	S Flow Recorder	
Resistance			JIIICE				
Plate No.	DH (orifice), in. of water	[DH x (Pa/7	(60) x (298/Ta)] ^{1/2}	Qstd (m³/min) X - axis	Flow Recorder Reading (CFM)	Continuous Flow Reading IC (CFM	
18	11.2		3.33	1.69	46.0	45.82	
13	9.0		2.99	1.51	42.0	41.84	
10	10 6.6 2.56				36.0	35.86	
7	4.2		2.04	1.03	28.0	27.89	
5	2.6		1.61	0.81	20.0	19.92	
By Linear Regre	ession of V on X						
Slope , mw =	29.6339			Intercept, bw =	-3.3	029	
Correlation Coe		-	.9942				
	efficient < 0.990,			_			
	·						
			Set Point	Calculation			
From the TSP Fi	eld Calibration Cu	ırve, take Qstd =	1.30m ³ /min				
From the Regres	sion Equation, the	e "Y" value accor	ding to				
		mw	$y \times Qstd + bw = IC$	x [(Pa/760) x (298/	Га)] ^{1/2}		
Thorofore Cat D	oint IC - (mw y (Jetd - hw / v [/ 7	/60 / Pa) x (Ta / 29	10 \1 ^{1/2} _		25.27	
Therefore, Set F	DITIL, IC = (ITIW X C	25tu + DW) X [(7	00/Fa)X(1a/29	o)] =		35.36	
Remarks:							

Type:	for a town of Power of		Laser Do	ust Moni	itor		
Manu	facturer/Brand:		SIBATA LD-3				
	ment No.:		A.005.07	'a			
	tivity Adjustment	Scale Setting:	557 CPI				
5517511	,,	orang,					
Standa	rd Equipment					····	
Equip	ment:	Rupprecht &	Patashnick	TEOM®			
Model	No.:	Series 1400/	4B				
Serial	No:	Control:	140AB2198				
		Sensor:	1200C1436	59803	K _o : 12500)	
Last C	Calibration Date*:	5 June 2009					
Calibra	tion Result	led interval for hard				PM	
		Scale Setting (After			Manager Company of the Company of th	PM	
Hour	Date	Time		bìent	Concentration ¹	Total	Count/
	(dd-mm-yy)			dition	(mg/m ³)	Count ²	Minute ³
			Temp (°C)	R.H.	Y-axis		X-axis
11	06-06-09	09:00 - 10:0		(%)	0.04175	1392	23.20
2	06-06-09	10:00 - 11:0		76	0.03983	1330	22.17
3	06-06-09	11:00 - 12:0		75	0.04025	1339	22,31
4	06-06-09	13:00 - 14:0		76	0.04271	1426	23.77
Note:	1. Monitoring of	data was measured	by Ruppred	ht & Pata			1
	Total Count	was logged by Las te was calculated b	er Dust Mon	iitor			
By Line:	ar Regression of	YorX					
	(K-factor):	0.0018	8				
Correl	ation coefficient:	0.996	5				
Validit	y of Calibration I	Record: 5 June	9 2010				
_							
Remark	(8:				A. 1848 B. M. C.		

Type:					Laser D	ust Moi	nitor		
	cturer/Brand:				SIBATA				
Model I					LD-3				
	ent No.:	01-0			A.005.0				
Sensitiv	ity Adjustment	Scale Se	etting	y :	702 CF	'M			
Ctandan	d Equipment								
Standare	a Equipment								
Equipm	ent:	Ru	ippre	echt & Pa	atashnick	TEOM®	·		-
Model I	No.:	Se	ries	1400AB					
Serial N	lo:		ontro		OAB2198				
	to the same of		nsor		200C1436	59803	K _o : 12	500	
Last Ca	libration Date*:	5.	June	2009					
*Remark	s: Recommend	led interv	al fo	r hardwa	are calibra	ation is 1	year		
Calibrati	on Result							,	
	rity Adjustment rity Adjustment						702 702	CPM CPM	
Hour	Date		Time)	Amb	ient	Concentration ¹	Total	Count/
	(dd-mm-yy)				Cond		(mg/m³)	Count ²	Minute ³
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	06-06-09	14:00	-	15:00	31.5	75	0.04325	2046	34.10
2	06-06-09	15:00	-	16:00	31.7	76	0.04278	2019	33.65
3	06-06-09	16:00	-	17:00	31.4	76	0.04351	2059	34.32
4	06-06-09	17:00	-	18:00	31.4	75	0.04152	1965	32.75
Note:	Total Count Count/minut	was logg te was ca	ed b	y Laser	Dust Mor	nitor	tashnick TEOM [®]		
	Regression of	Y or X		20040					
	<-factor): tion coefficient:		0.000	0.0013					
Correia	uon coemcient:			0.9959					
Validity	of Calibration F	Record:	_5	June 2	010				
Remarks									
		· · · · · · · · · · · · · · · · · · ·							

Туре:			_	Laser Do	ust Moni	tor		
Manut Model	facturer/Brand:		_	SIBATA LD-3				
	ment No.:			A.005.09)			
	tivity Adjustment	Scale Set	tina:	797 CPI				
Ochan	avity Adjustition	Codic Co.	g.	101 011	<u></u>	Promoted Prilities of Promoted Principal Principal Promoted Institution Security Sec		
Standa	rd Equipment							
Equip	ment:	Rup	precht & Pa	atashnick	TEOM®			
Model	No.:	Seri	es 1400AB					
Serial	No:	Con		0AB2198				***
		Sen	-0000000	00C1436	59803	K _o : 12500		
Last C	Calibration Date*:	5 Ju	ne 2009					
*Remar	ks: Recommend	led interva	for hardwa	ire calibra	tion is 1 y	year		
Calibra	tion Result						ana- <u>-araka-araka</u> araka-arak	
	iivity Adjustment					_797CP		
Sensit	tivity Adjustment	Scale Set	ting (After C	alibration):	CP	M	
Hour	Date	т	ime	Ami	pient	Concentration	Total	Count/
11001	(dd-mm-yy)			1	dition	(mg/m³)	Count ²	Minute ³
	(==),,			Temp	R.H.	Y-axis	+	X-axis
				(°C)	(%)			
1	07-06-09	09:00	- 10:00	30.5	76	0.04255	1546	25.77
2	07-06-09	10:00	- 11:00	30.7	76 75	0.04233 0.04113	1537 1492	25.62 24.87
3	07-06-09 07-06-09	11:00 12:00	- 12:00 - 13:00	30.7	76	0.04113	1507	25.12
Note:						shnick TEOM®	1507	20.12
Note.	2. Total Count	was looge	d by Laser	Dust Mon	itor	SITTION I LOW		
	3. Count/minu	te was cal	culated by (Total Cou	nt/60)			
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	ar Regression of	Y or X						
	(K-factor):		0.0017					
Correl	ation coefficient:		0.9976					
Validit	y of Calibration F	Record:	6 June 2	010				
	-							
D								
Remark	S:							
L								

Manufacturer/Brand: Anob. 10-3 Anob. 1	Type:				_	Laser Du	ıst Moni	tor		
Standard Equipment Rupprecht & Patashnick TEOM®			-		_					
Sensitivity Adjustment Scale Setting:					_					
Equipment: Rupprecht & Patashnick TEOM®					_					
Equipment: Rupprecht & Patashnick TEOM®	Sensiti	ivity Adjustment	Scale Se	etting	g: _	753 CPI	И	· .		
Model No.: Series 1400AB Control: 140AB219899803 Sensor: 1200C143659803 Ko: 12500										
Model No.: Series 1400AB	Standar	rd Equipment								,
Control: 140AB21989803 Ko: 12500	Equipr	nent:	Rι	ıppre	echt & Pa	tashnick	TEOM®			
Control: 140AB219899803 Korsor: 1200C143659803 CPM Calibration Calibration CPM Concentration Concen	Model	No.:	Se	eries	1400AB					
Last Calibration Date*:						0AB21989	99803			
Calibration Date*: 5 June 2009 Semarks: Recommended interval for hardware calibration is 1 year								K _o : 12500)	
Sensitivity Adjustment Scale Setting (Before Calibration): 753	Last C	alibration Date*	5.	June	*****					
Sensitivity Adjustment Scale Setting (Before Calibration): 753	Remark	s: Recommend	led interv	al fo	r hardwa	re calibra	tion is 1 y	/ear		
Sensitivity Adjustment Scale Setting (Before Calibration): 753	Calibrat	tion Result								
Condition (mg/m³) Count² Temp R.H. Y-axis Count²	Sensiti	vity Adjustment		etting	(After C	alibration):	753 CF	PM	
Temp R.H. Y-axis	Hour			Time	е					Count/
1		(aa-mm-yy)							Count	Minute X-axis
1 08-08-09 10:00 - 11:00 33.1 74 0.14066 5706 2 08-08-09 12:00 - 13:00 33.1 75 0.14152 5725 3 08-08-09 14:00 - 15:00 33.2 75 0.14390 5833 4 08-08-09 15:00 - 16:00 33.2 74 0.14540 5888 Iote: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) By Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9939 Validity of Calibration Record: 7 August 2010								T-axis		A-axis
2 08-08-09 12:00 - 13:00 33:1 75 0.14152 5725 3 08-08-09 14:00 - 15:00 33:2 75 0.14390 5833 4 08-08-09 15:00 - 16:00 33:2 74 0.14540 5888 Iote: 1. Monitoring data was measured by Rupprecht & Patashnick TEOM® 2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) by Linear Regression of Y or X Slope (K-factor): 0.0015 Correlation coefficient: 0.9939 Validity of Calibration Record: 7 August 2010	1	08-08-09	10:00		11:00			0.14066	5706	95.10
3										95.42
4 08-08-09 15:00 - 16:00 33.2 74 0.14540 5888 Interpretation of Yor X Slope (K-factor): 0.9939 Validity of Calibration Record: 7 August 2010				_						97.22
2. Total Count was logged by Laser Dust Monitor 3. Count/minute was calculated by (Total Count/60) by Linear Regression of Y or X Slope (K-factor): Correlation coefficient: 0.0015 0.9939 Validity of Calibration Record: 7 August 2010				_						98.13
Slope (K-factor): 0.0015 Correlation coefficient: 0.9939 Validity of Calibration Record: 7 August 2010	ote:	2. Total Count	was logg	ged b	y Laser I	Dust Mon	itor	shnick TEOM®		
Correlation coefficient: 0.9939 Validity of Calibration Record: 7 August 2010			Y or X							
Validity of Calibration Record: 7 August 2010				78777						
	Correla	ation coefficient:		_(0.9939					
Remarks:	Validity	of Calibration I	Record:	_;	7 August	2010				
Remarks:										
	Remarks	s:							-	
		-								

Type: Manuf Model	facturer/Brand: No.:		-	Laser Do SIBATA LD-3	ust Moni	tor		
	ment No.; livity Adjustment	Scale Setting): -	A.005.11 799 CPI		 -		
Standa	rd Equipment							
Equip	ment:	Ruppre	echt & Pa	atashnick	TEOM®			
Model			1400AB		00000			
Serial	NO:	Control Sensor		0AB2198		K _a : 12500)	
Last C	Calibration Date*:							
*Remar	ks: Recommend	led interval fo	r hardwa	re calibra	tion is 1 y	/ear		
Calibra	tion Result							
	ivity Adjustment ivity Adjustment						PM PM	
Hour	Date	Time)		bient	Concentration	Total	Count/
	(dd-mm-yy)			Temp	dition R.H.	(mg/m³) Y-axis	Count ²	Minute ³ X-axis
				(°C)	(%)	1-dAIS		A-axis
1	04-07-09	11:00 -	12:00	29.7	78	0.03713	1498	24.97
2	04-07-09	12:00 -	13:00	29.7	78	0.03520	1404	23.41
3	04-07-09	14:00 -	15:00	30.1	81	0.03891	1553	25.91
4	04-07-09	15:00 -	16:00	30.1	81	0.04025	1618	26.97
Note:	Monitoring of 2. Total Count 3. Count/minuter Regression of a count/minuter Regression of the country ar Regression of the country are segression.	was logged b te was calcula	y Laser	Dust Mon	itor	shnick TEOM [®]		
	(K-factor):		0.0015					
Correl	ation coefficient:	_(0.9907					
Validit	y of Calibration F	Record:3	3 July 20	10				
Remark	s:							

	·or/Dronds				Laser Du	ıst Moni	itor		
Model No	urer/Brand:			_	SIBATA LD-3B				
Equipmer				_	A.005.12	a			
	/ Adjustment	Scale Se	ttina:	_	805 CPI				
	, tegacanoni			_		-			
Standard I	Equipment	·							
Equipmer	nt:	Ruj	prech	it & Pai	tashnick '	TEOM®			
Model No	.:	Ser	ies 14	00AB					
Serial No:		Cor	ntrol:		AB21 9 89				
Last Calib	ration Date*:		isor: une 20		00C14365	9803	K₀: <u>12500</u>)	
*Domarke:	Recommend	ad interva	l for h	andwar	e colibroi	ion ie 1 s	veer		
		eu interve		aiuwai	Calibrai	ion is 1	yeai		
Calibration	Result								
Sensitivity	Adjustment	Scale Set	tina (F	Refore (Calibratio	n)-	805 CF	РМ	
	Adjustment							PM	
	,								
Hour	Date	Т	ime		· Amb		Concentration 1	Total	Count
. (dd-mm-yy)				Cond		(mg/m³)	Count ²	Minute
					Temp (°C)	R.H. (%)	Y-axis		X-axis
1	24-10-09	08:00	- (9:00	29.9	74	0.03432	1302	21.70
	24-10-09	09:00		0:00	29.9	74	0.02947	1092	18.20
	24-10-09	10:00		1:00	30.0	74	0.03588	1352	22.53
	24-10-09	11:00		2:00	30.0	76	0.02855	1078	17.97
Note: 1.	Total Count Count/minut	was logge	ed by I	aser [Dust Mon	tor	ashnick TEOM®		
3. By Linear R Slope (K-1	tegression of factor): n coefficient:			016 924					

Appendix B

Baseline Air Quality

Monitoring Data

Appendix B Baseline Air Quality Monitoring Data

24-hour TSP Monitoring Results at Station CMA1a - Yu Lee Mo Fan Memorial School

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	/eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Dec-09	1.319	1.319	1.319	1899.4	3.4400	3.7097	0.2697	9273.30	9297.30	24.00	142
5-Dec-09	1.319	1.319	1.319	1899.4	3.5921	3.7965	0.2044	9297.30	9321.30	24.00	108
6-Dec-09	1.319	1.319	1.319	1899.4	3.5886	3.8149	0.2263	9321.30	9345.30	24.00	119
7-Dec-09	1.319	1.319	1.319	1899.4	3.5658	3.6772	0.1114	9345.30	9369.30	24.00	59
8-Dec-09	1.319	1.319	1.319	1899.4	3.5028	3.5518	0.0490	9369.30	9393.30	24.00	26
9-Dec-09	1.319	1.319	1.319	1899.4	3.5051	3.6074	0.1023	9393.30	9417.30	24.00	54
10-Dec-09	1.319	1.319	1.319	1899.4	3.4985	3.6476	0.1491	9417.30	9441.30	24.00	79
11-Dec-09	1.319	1.319	1.319	1890.4	3.5230	3.6224	0.0994	9441.30	9465.30	24.00	52
12-Dec-09	1.319	1.319	1.319	1899.4	3.5101	3.6272	0.1171	9465.30	9489.30	24.00	62
13-Dec-09	1.319	1.319	1.319	1899.4	3.5188	3.7326	0.2138	9489.30	9513.30	24.00	113
14-Dec-09	1.319	1.319	1.319	1899.4	3.5160	3.6290	0.1130	9513.30	9537.30	24.00	60
15-Dec-09	1.319	1.319	1.319	1899.4	3.5280	3.6043	0.0763	9537.30	9561.30	24.00	40
16-Dec-09	1.319	1.319	1.319	1899.4	3.5146	3.5977	0.0831	9561.30	9585.30	24.00	44
17-Dec-09	1.319	1.319	1.319	1899.4	3.4291	3.5244	0.0953	9585.30	9609.30	24.00	50
	•	•						•	•	Average	71.9
										Min	26.0
										Max	142.0

24-hour TSP Monitoring Results at Station CMA2a - Causeway Bay Community Centre

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	/eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Initial	Final	(m ³ /min)	(m^3)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu g/m^3)$
4-Dec-09	1.329	1.329	1.329	1913.8	3.6332	3.8710	0.2378	14042.82	14066.85	24.03	124
5-Dec-09	1.329	1.329	1.329	1913.8	3.5718	3.7770	0.2052	14066.85	14090.85	24.00	107
6-Dec-09	1.329	1.329	1.329	1913.8	3.4940	3.6781	0.1841	14090.85	14114.85	24.00	96
7-Dec-09	1.329	1.329	1.329	1913.8	3.5647	3.6483	0.0836	14114.85	14138.85	24.00	44
8-Dec-09	1.329	1.329	1.329	1913.8	3.5047	3.5393	0.0346	14138.85	14162.85	24.00	18
9-Dec-09	1.329	1.329	1.329	1913.8	3.5094	3.6064	0.0970	14162.85	14186.85	24.00	51
10-Dec-09	1.329	1.329	1.329	1913.8	3.5025	3.5480	0.0455	14186.85	14210.85	24.00	24
11-Dec-09	1.329	1.329	1.329	1913.8	3.5182	3.6069	0.0887	14210.85	14234.85	24.00	46
12-Dec-09	1.329	1.329	1.329	1913.8	3.5151	3.6068	0.0917	14234.85	14258.85	24.00	48
13-Dec-09	1.329	1.329	1.329	1913.8	3.5161	3.7262	0.2101	14258.85	14282.85	24.00	110
14-Dec-09	1.329	1.329	1.329	1913.8	3.5095	3.6036	0.0941	14282.85	14306.85	24.00	49
15-Dec-09	1.329	1.329	1.329	1913.8	3.5278	3.5974	0.0696	14306.85	14330.85	24.00	36
16-Dec-09	1.329	1.329	1.329	1913.8	3.5211	3.6135	0.0924	14330.85	14354.85	24.00	48
17-Dec-09	1.329	1.329	1.329	1913.8	3.4205	3.5120	0.0915	14354.85	14378.85	24.00	48

 Average
 60.7

 Min
 18.0

 Max
 124.0

24-hour TSP Monitoring Results at Station CMA3 - Yacht Club

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Initial	Final	(m ³ /min)	(m^3)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Dec-09	1.313	1.313	1.313	1890.7	3.6238	3.8571	0.2333	25087.84	25111.84	24.00	123
5-Dec-09	1.313	1.313	1.313	1890.7	3.5973	3.7873	0.1900	25101.84	25125.84	24.00	101
6-Dec-09	1.313	1.313	1.313	1887.8	3.8750	4.0694	0.1944	16437.00	16461.00	24.00	103
7-Dec-09	1.313	1.313	1.313	1890.7	3.4958	3.5723	0.0765	25149.84	25173.84	24.00	41
8-Dec-09	1.313	1.313	1.313	1890.7	3.4100	3.4608	0.0508	25173.84	25197.84	24.00	27
9-Dec-09	1.313	1.313	1.313	1890.7	3.5056	3.5843	0.0787	25197.84	25221.84	24.00	42
10-Dec-09	1.313	1.313	1.313	1890.7	3.5086	3.6598	0.1512	25221.84	25245.84	24.00	80
11-Dec-09	1.313	1.313	1.313	1890.7	3.5068	3.5814	0.0746	25245.84	25269.84	24.00	40
12-Dec-09	1.313	1.313	1.313	1890.7	3.5327	3.5854	0.0527	25269.84	25293.84	24.00	28
13-Dec-09	1.313	1.313	1.313	1890.7	3.5241	3.7461	0.2220	25293.84	25317.84	24.00	117
14-Dec-09	1.313	1.313	1.313	1890.7	3.8221	3.9202	0.0981	25317.84	25341.84	24.00	52
15-Dec-09	1.313	1.313	1.313	1890.7	3.5226	3.5963	0.0737	25341.84	25365.84	24.00	39
16-Dec-09	1.313	1.313	1.313	1890.7	3.5221	3.6099	0.0878	25365.84	25389.84	24.00	46
17-Dec-09	1.310	1.313	1.312	1890.7	3.4292	3.5163	0.0871	25389.84	25413.84	24.00	46

 Average
 63.1

 Min
 27.0

 Max
 123.0

24-hour TSP Monitoring Results at Station CMA4a - Society for the Prevention of Cruelty to Animals

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Initial	Final	(m ³ /min)	(m ³)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu g/m^3)$
4-Dec-09	1.311	1.311	1.311	1887.8	3.5616	3.7736	0.2120	16389.00	16413.00	24.00	112
5-Dec-09	1.311	1.311	1.311	1887.8	3.5901	3.7775	0.1874	16413.00	16437.00	24.00	99
6-Dec-09	1.311	1.311	1.311	1887.8	3.8750	4.0694	0.1944	16437.00	16461.00	24.00	103
7-Dec-09	1.311	1.311	1.311	1887.8	3.4900	3.5795	0.0895	16461.00	16485.00	24.00	47
8-Dec-09	1.311	1.311	1.311	1887.8	3.8336	3.8689	0.0353	16485.00	16509.00	24.00	19
9-Dec-09	1.311	1.311	1.311	1887.8	3.5568	3.5745	0.0177	16509.00	16533.00	24.00	9
10-Dec-09	1.311	1.311	1.311	1887.8	3.5215	3.7088	0.1873	16533.00	16557.00	24.00	99
11-Dec-09	1.311	1.311	1.311	1887.8	3.5160	3.6025	0.0865	16557.00	16581.00	24.00	46
12-Dec-09	1.311	1.311	1.311	1887.8	3.5312	3.6419	0.1107	16581.00	16605.00	24.00	59
13-Dec-09	1.311	1.311	1.311	1887.8	3.5232	3.7482	0.2250	16581.00	16605.00	24.00	119
14-Dec-09	1.311	1.311	1.311	1887.8	3.8450	3.9404	0.0954	16605.00	16629.00	24.00	51
15-Dec-09	1.311	1.311	1.311	1887.8	3.5250	3.5967	0.0717	16629.00	16653.00	24.00	38
16-Dec-09	1.311	1.311	1.311	1887.8	3.5231	3.6030	0.0799	16653.00	16677.00	24.00	42
17-Dec-09	1.311	1.311	1.311	1887.8	3.4286	3.5102	0.0816	16677.00	16701.00	24.00	43
										Average	63.4

 Average
 63.4

 Min
 9.0

 Max
 119.0

24-hour TSP Monitoring Results at Station CMA5 - Pedestrian Plaza

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	/eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Initial	Final	(m ³ /min)	(m^3)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	(µg/m³)
4-Dec-09	1.327	1.327	1.327	1871.1	3.6025	3.8500	0.2475	10193.11	10216.61	23.50	132
5-Dec-09	1.327	1.327	1.327	1871.1	3.5717	3.7903	0.2186	10216.61	10240.11	23.50	117
6-Dec-09	1.327	1.327	1.327	1910.9	3.8478	4.0191	0.1713	10240.11	10264.11	24.00	90
7-Dec-09	1.327	1.327	1.327	1871.1	3.5537	3.6628	0.1091	10264.11	10287.61	23.50	58
8-Dec-09	1.327	1.327	1.327	1910.9	3.5062	3.5769	0.0707	10287.61	10311.61	24.00	37
9-Dec-09	1.327	1.327	1.327	1910.9	3.5102	3.6943	0.1841	10311.61	10335.61	24.00	96
10-Dec-09	1.327	1.327	1.327	1910.9	3.5181	3.7005	0.1824	10335.61	10359.61	24.00	96
11-Dec-09	1.327	1.327	1.327	1910.9	3.5176	3.6280	0.1104	10359.61	10383.61	24.00	58
12-Dec-09	1.327	1.327	1.327	1910.9	3.5224	3.6690	0.1466	10383.61	10407.61	24.00	77
13-Dec-09	1.327	1.327	1.327	1910.9	3.5171	3.7554	0.2383	10409.61	10433.61	24.00	125
14-Dec-09	1.327	1.327	1.327	1910.9	3.5206	3.5951	0.0745	10433.61	10457.61	24.00	39
15-Dec-09	1.327	1.327	1.327	1919.9	3.5358	3.6153	0.0795	10457.61	10481.61	24.00	42
16-Dec-09	1.327	1.327	1.327	1910.9	3.5238	3.6392	0.1154	10481.61	10505.61	24.00	60
17-Dec-09	1.327	1.327	1.327	1910.9	3.4238	3.5625	0.1387	10505.61	10529.61	24.00	73

 Average
 78.5

 Min
 37.0

 Max
 132.0

24-hour TSP Monitoring Results at Station CMA6 - Servicemen's Guides Association

Date	Flow Rate	(m³/min.)	Av. flow	Total vol.	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Conc.
	Initial	Final	(m ³ /min)	(m^3)	Initial	Final	weight(g)	Initial	Final	Time(hrs.)	$(\mu g/m^3)$
4-Dec-09	1.327	1.327	1.327	1910.9	3.6102	3.9171	0.3069	9836.66	9860.66	24.00	161
5-Dec-09	1.327	1.327	1.327	1910.9	3.5818	3.8384	0.2566	9860.66	9884.66	24.00	134
6-Dec-09	1.327	1.327	1.327	1910.9	3.4971	3.7365	0.2394	9884.66	9908.66	24.00	125
7-Dec-09	1.327	1.327	1.327	1910.9	3.4987	3.6172	0.1185	9908.66	9932.66	24.00	62
8-Dec-09	1.327	1.327	1.327	1910.9	3.4961	3.5668	0.0707	9932.66	9956.66	24.00	37
9-Dec-09	1.327	1.327	1.327	1910.9	3.5100	3.6224	0.1124	9956.66	9980.66	24.00	59
10-Dec-09	1.327	1.327	1.327	1910.9	3.5048	3.7344	0.2296	9980.66	10004.66	24.00	120
11-Dec-09	1.327	1.327	1.327	1910.9	3.5038	3.6015	0.0977	10004.66	10028.66	24.00	51
12-Dec-09	1.327	1.327	1.327	1910.9	3.5191	3.6548	0.1357	10028.66	10052.66	24.00	71
13-Dec-09	1.327	1.327	1.327	1910.9	3.5271	3.8393	0.3122	10052.66	10076.66	24.00	163
14-Dec-09	1.327	1.327	1.327	1910.9	3.8582	3.9854	0.1272	10076.66	10100.66	24.00	67
15-Dec-09	1.327	1.327	1.327	1910.9	3.5173	3.6002	0.0829	10100.66	10124.66	24.00	43
16-Dec-09	1.327	1.327	1.327	1910.9	3.5380	3.6776	0.1396	10124.66	10148.66	24.00	73
17-Dec-09	1.327	1.327	1.327	1910.9	3.5301	3.6609	0.1308	10148.66	10172.66	24.00	69
										Average	88.2

 Average
 88.2

 Min
 37.0

 Max
 163.0

Appendix B Baseline Air Quality Monitoring Data

1-hour TSP Monitoring Results at Station CMA1a Yu Lee Mo Fan Memorial School

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Dec-09	13:15	109.7	139.8	144.7
5-Dec-09	9:00	117.5	112.4	113.7
6-Dec-09	15:20	123.1	112.3	94.9
7-Dec-09	9:25	69.7	53.8	66.5
8-Dec-09	13:50	103.3	126.2	114.9
9-Dec-09	9:00	94.1	85.4	97.6
10-Dec-09	13:00	173.0	157.4	155.7
11-Dec-09	16:50	131.9	115.5	117.5
12-Dec-09	9:15	107.4	118.9	120.8
13-Dec-09	10:50	93.9	97.5	93.8
14-Dec-09	10:50	116.5	112.7	114.5
15-Dec-09	10:00	112.7	119.1	119.7
16-Dec-09	9:40	83.4	84.8	85.2
17-Dec-09	13:05	66.4	78.1	73.1
			Average	107.8
			Min	53.8
			Max	173.0

1-hour TSP Monitoring Results at Station CMA2a Causeway Bay Community Centre

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m ³)	(µg/m³)
4-Dec-09	12:45	119.7	137.7	161.4
5-Dec-09	10:30	110.7	104.5	106.3
6-Dec-09	9:20	96.8	98.5	99.0
7-Dec-09	13:05	116.6	115.5	113.2
8-Dec-09	13:35	116.0	126.6	125.1
9-Dec-09	13:20	121.2	117.6	110.1
10-Dec-09	9:15	160.1	171.1	181.4
11-Dec-09	13:15	113.1	113.4	123.5
12-Dec-09	10:05	102.5	87.7	92.9
13-Dec-09	14:00	77.4	77.9	78.2
14-Dec-09	9:20	102.5	87.7	92.9
15-Dec-09	13:05	78.2	69.6	84.6
16-Dec-09	12:55	146.7	144.2	138.2
17-Dec-09	9:15	100.4	106.3	115.7
			Average	112.9
			Min	69.6
			Max	181.4

1-hour TSP Monitoring Results at Station CMA3 Yach Club

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Dec-09	9:30	104.0	99.6	109.7
5-Dec-09	14:25	113.5	114.0	114.2
6-Dec-09	10:00	127.1	118.9	102.3
7-Dec-09	9:00	70.7	94.7	78.5
8-Dec-09	17:05	80.5	59.5	53.5
9-Dec-09	9:05	71.3	82.5	75.0
10-Dec-09	13:05	113.2	117.6	121.2
11-Dec-09	9:30	82.1	82.8	83.2
12-Dec-09	9:35	76.6	72.2	88.1
13-Dec-09	10:50	121.9	117.6	124.4
14-Dec-09	9:05	135.2	142.0	134.4
15-Dec-09	10:15	76.3	80.3	75.0
16-Dec-09	9:30	81.2	82.4	83.2
17-Dec-09	9:55	65.0	67.2	69.5
			Average	94.3
			Min	53.5
			Max	142.0

1-hour TSP Monitoring Results at Station CMA4a Society for the Prevention of Cruelty to Animals

	01 1	4 (11	0 111	0 111
	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Dec-09	10:00	86.1	91.7	105.5
5-Dec-09	9:15	87.9	95.5	98.7
6-Dec-09	10:00	117.5	130.1	131.0
7-Dec-09	14:10	89.9	90.8	96.0
8-Dec-09	9:20	88.2	72.7	77.4
9-Dec-09	12:55	82.9	90.8	89.5
10-Dec-09	9:30	113.8	122.4	109.9
11-Dec-09	13:05	119.1	122.9	140.8
12-Dec-09	11:25	102.9	107.7	101.3
13-Dec-09	9:30	90.9	86.6	87.7
14-Dec-09	13:30	91.3	99.9	107.4
15-Dec-09	9:30	85.2	69.7	69.1
16-Dec-09	10:15	90.9	93.9	98.9
17-Dec-09	14:00	64.7	70.5	69.1
			Average	96.2
			Min	64.7
			Max	140.8

1-hour TSP Monitoring Results at Station CMA5 **Pedestrian Plaza**

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Dec-09	18:45	134.7	139.4	129.4
5-Dec-09	11:10	127.9	126.9	122.1
6-Dec-09	13:35	129.0	135.6	130.1
7-Dec-09	14:05	132.3	129.9	133.7
8-Dec-09	9:05	120.7	124.5	117.6
9-Dec-09	16:35	81.3	90.1	85.3
10-Dec-09	10:15	162.0	166.8	185.1
11-Dec-09	14:30	154.7	183.5	172.6
12-Dec-09	10:05	121.0	134.8	123.7
13-Dec-09	14:05	115.5	118.5	121.8
14-Dec-09	10:25	105.1	108.5	117.5
15-Dec-09	9:30	140.8	145.1	139.4
16-Dec-09	9:20	109.5	122.8	128.9
17-Dec-09	12:35	72.4	82.5	73.8
			Average	126.1
			Min	72.4
			Max	185.1

1-hour TSP Monitoring Results at Station CMA6 **Servicemen's Guides Association**

	Start	1st Hour	2nd Hour	3rd Hour
	Time	Conc.	Conc.	Conc.
Date	(hh:mm)	(µg/m³)	(µg/m³)	(µg/m³)
4-Dec-09	9:05	90.6	78.6	69.6
5-Dec-09	10:15	66.8	70.4	74.3
6-Dec-09	12:30	87.8	90.1	69.4
7-Dec-09	10:25	74.4	70.5	72.7
8-Dec-09	13:05	57.5	54.6	57.6
9-Dec-09	9:20	60.3	50.5	52.0
10-Dec-09	16:35	99.1	112.4	124.6
11-Dec-09	9:25	93.3	89.2	100.5
12-Dec-09	15:10	64.0	61.1	70.6
13-Dec-09	13:40	77.6	104.9	86.3
14-Dec-09	9:45	76.2	80.1	73.4
15-Dec-09	13:05	79.4	81.3	86.8
16-Dec-09	14:40	79.8	83.3	80.1
17-Dec-09	9:25	59.9	64.0	62.1
-			Average	77.1
			Min	50.5

Min 124.6 Max

Appendix C

Responses to Comments

Environmental Impact Assessment (EIA) Ordinance, Cap. 499 Environmental Permits Nos.: EP-356/2009 & EP-364/2009 Wan Chai Development Phase II and Central-Wan Chai Bypass Baseline Air Quality Monitoring Report (Dec 2009)

Response to Comment - EPD's letter ref.: (26) in EP2/H4/S3/15 Pt.3 dated 25 January 2010

Comments	Reponses
Initial Comments:	- Nopelius
General:	
(1) The baseline report was submitted to meet the requirements of the capitoned 2 permits. Since the scopes of the two permits are different and the EM&A requirements shall follow the 2 standardalone EM&A Manuals to be approved under each of the 2 permits, two standalone baseline montioring reports shall be submitted to meet the requirements of the 2 permits separately.	As the works under the two separate permits are actually carried out together under a number of works contracts divided geographically, and the EM&A works for all these works contracts (with DPs) are conducted by a single ET and verified by a single IEC, we suggest the updated EM&A Manuals for these two permits are combined into a single volume which is applicable to both EPs, with those EM&A items applicable to only one particular EP properly annotated. This will give a more complete overall picture of the EM&A for the whole Project.
(2) The baseline air quality montiroing shall be conducted to fulfill the standard/established EM&A requirements/guidelines and the relevant requirements in the EM&A Manual (Dec 2007). Please refer to our recent intial comments via our letter dated 19.1.2010 to you on the updated EM&A Manuals submitted in Dec 2009 and ensure the baseline air quality montioring complies with the Manuals to be approved, e.g. to address the odour baseline quality. You may also want to refer to the odour surveys conducted during the EIA study stage.	Two odour surveys including odour patrol and sampling were conducted on Sept-06 and Jul-07 by the Hong Kong Polytechnic University, and the results are included in Appendix 3.13 of the EIA Report for Wan Chai Development Phase II and Central-Wan Chai Bypass (Register No. AEIAR-125/2008). Both Sept-06 and Jul-07 odour patrols and sampling had been carried out during noon/afternoon at low tide condition for capturing the potential worst odour level of that day and hence are considered representative for the odour baseline quality. Hence, the Sept-06 and Jul-07 odour patrols and sampling will be taken as the odour baseline.
Specific:	
Background	
(3) S1.1: The project locations and scopes of the 2 permits are different. The project site of EP-364/2009 includes Central harbourfront area (but not mentioned in s.1.1.1). The term "study area" should be replaced by "proejct area" in the baseline reports where appropriate. S1.1.4 copying from the WDII&CWB EIA report should be amended to suit the corresponding baseline reports.	Noted and the wordings will be revised.

Monitoring equipment for 1-hr TSP Monitoring
Sections 2.2, 2.5, 2.6 & 2.7 of Baseline Air Quality
Montioring Report:

(4) As stated in S 2.3.1 of the EM&A Manual (Dec 2007) and "Guidelines for Develoment project in Hong Kong – Environmental Monitoring and Audit", high volume samplers (HVS) shall be used for carrying out the 1-hour and 24-hour TSP monitoring". The 1-hr TSP montiroign shall be conducted usign HVSs instead of portable direct reading dust meter. Before baseline monitoring and the intial stage of construction stage montiroing, it is doubtful that any proper calibration of a direct reading dust meter against HVS could be achieved since the dust contents/particle-size distribution could be site specific and changing form time to time. If direct reading dust meters are propsoed to be used. please follow the requirements in the EM&A Manual (Dec 2007) and provide documentation to demonstrate if the calibration is properly achieved and the specific certification by IEC on the calibration and acceptablility to use the direct reading dust meter(s). Besides, even after "initial" calibration, further regular calibrations using HVS is required to check the validity and accuracy of the results measured by direct reading dust method as staed in EM&A Manual (Dec 2007). All these should be reported in the baseline report and the future EM&A reports.

The portable direct reading dust meter were used for 1-hr TSP baseline montioring and these meters are calibrated against a continuous particulate meter, Tapered Element Oscillating Mircrobalance (TEOM), which is an USEPA approved instrument for the continuous TSP monitoring.

The calibration records for the portable direct reading dust meter were presented in Appendix A and such calibration will be carried out annualy for checking the data accuarcy.

The use of portable direct reading dust meter is a usual and acceptable practice for the measurement of 1-hr TSP for most of current EM&A projects in Hong Kong such as EM&A for the Widening of Tolo Highway between Island House Interchange & Tai Hang-Investigation and Development of Anderson Road - Site Formation & Infrastructure Works.

As the dust content for TSP including all particle sizes which can be suspended in the air and therefore the particle size distribution is not the concerned factor in measuring TSP concentrations.

The calibration was carried out for a consecutive 4-hr period in order to determine the conversion factor between the portable direct reading dust meter and the standard erquipment, TEOM. The calibration is to be considered valid if the calculated correlation coefficient is >0.990.

(5) S2.3 – TSP monitoring Locations: Both WDII&CWB EIA report (AEIAR-125/2008) and CWB&IECL EIA report (AEIAR-041/2001) predicted that the worst case construction dust impacts would be at a level of 1.5m above ground. The monitoring samplers should be placed at thet level as far as practicable. In particular, a location of roof-top (24-storeys) of a high-rise building (i.e. Station MA1b) is not representative nor acceptable for construction dust monitoring in this project with constrcuiton works mainly at ground/low levels. Please explore whether there are alternative locations, e.g. any site office nearby, any low podium or at the site boundary close to the air sensitive receivers. Please provide justifications for the proposed monitoring locations/elevations in the baseline reports.

The monitoring station at Harbour Building (Station MA1b), which is an alternative location for Airport Railway Hong Kong Station (MA1) with similar environmental condition and near the site boundary, is one of the existing air sensitive receivers presented in the EIA Study Report. As the nearby relatively low-rise domestic premises and commercial buildings did not allow us to carry out the baseline air quality monitoring, therefore MA1b was considered to be the most appropriate alternative monitoring location.

The monitoring station at roof-top of Harbour Building (Station MA1b) is the only accessible building with the electricity supply for carrying out the consecutive 14-day baseline monitoring. None of the nearby locations at lower level are allowed for such monitoring. Therefore, this location is considered to be the best alternative

	location for Airport Railway Hong Kong Station (MA1)
	(MIXT)
Proposed alternative monitoring location	
Section 2.3 of Baseline Report:	
(6) It is noted that some alternative air montiroing	
locations are proposed when compared with the EIA reports. According to S1.4.2, Appendix D2, 'Guidelines for Development project in Hong Kong – Environmental Monitoring and Audit', "When alternative monitoring locations are	CMA1 - City Garden Block 11 CMA1a - PLK Yu Lee Mo Fan Memorial School (alternative location) Justification: CMA1 rejected us to carry out the baseline air monitoring
proposed, the following criteria, as fat as practicable, shall be followed:	CMA1 and CMA1a were both located at the site boundary with similar environmental condition The roof-top height of CMA1a (4 floor) was lower than CMA1 (27 floor)
(a) at the site boundary or such locations close to the major dust emission source;(b) close to the sensitive receptors; and	CMA2 - Victoria Centre CMA2a - Causeway Bay Community Centre (alternative location)
(c) take into account the prevailing meteorological conditions."	Justification: CMA2 rejected us to carry out the baseline air monitoring
Please provide your considerations and justifications for the proposed changes in monitoring locations in the baseline reports	CMA2 and CMA2a were both located at the site boundary with similar environmental condition The roof-top height of CMA2a (4 floor) was lower than CMA2 (30 floor)
monitoring researche in the second reports	CMA4 - Wanchai Sports Ground CMA4a - Society for the Prevention of Cruelty to Animals (alternative location) Justification:
	CMA4 rejected us to carry out the baseline air monitoring CMA4a was also one of air sensitive receivers in EIA
	Study Report CMA4 and CMA4a were both located at the site boundary with similar environmental condition
	MA1 - Airport Railway Hong Kong Station MA1b - Harbour Building (alternative location) Justification: Refer to response to comment item (5)
Calibration details	• Refer to response to comment item (5)
Appendix A of Baseline Report (re: S.10.2.2(vi) of	
EM&A Manual):	
(7) As required under S 10.2.2(iv) of the EM&A Manual (Dec 2007), which states that "the	Noted. The name of laboratory is provided in Section 2.5.1 b (iii). The calibration record of HVS
baseline monitoring report should include monitoring result together with the <u>name of</u>	and 1-hr portable direct reading dust meter are provided in Appendix A.
<u>laboratory</u> and types of equipment used and calibration details". Please provide the name of	
laboratory and the necessary information in the baseline reports.	
Maintenance and calibration of HVSs	
Section 2.5(d)(ii) of Baseline Report (re: S.2.3.3 of EM&A Manual)	
(8) It is noted that the HVSs were calibrated at 3-month intervals, which does not comply with S2.3.3 of EM&A Manual (Dec 2007), which states that "initial calibration of dust monitoring equipment shall be conducted upon installation	Noted and the calibration frequency for the HVSs will be revised to bi-monthly interval in the baseline report and all the monitoring results are valid.
and thereafter at <u>bi-monthly</u> intervals". Please clarify and justify whether the monitoring results	

are still valid or not.	
(9) Please advise whether the wind data monitoring equipment as reqruired in the EM&A Manual, has been set-up; if affirmative, whether the results from the equipemnt have been recorded during the baseline monitoring.	NO wind data montiroing equipment was set-up during the baseline monitoring and the meteorological data were obtained from the Hong Kong Observatiory.
<u>Figures</u>	
(10) Figures/location plans should be provided in each baseline reports to show the project elements and works under the corresponding permits. For example, Figure 2.1 did not show some of the project area udner EP-364/2009 at the western end near Shun Tak Centre. Besides, some of the project elements (e.g. water mains and sewage outfall – although are marines works) under EP-356/2009 were also missing. Please amend.	Noted and will be provided.